Email updates

Keep up to date with the latest news and content from JNER and BioMed Central.

Open Access Research

Entropy of balance - some recent results

Frank G Borg* and Gerd Laxåback

Author Affiliations

University of Jyväskylä, Kokkola University Consortium Chydenius, Health Sciences Unit, Talonpojank. 2B, FIN-67701 Kokkola, Finland

For all author emails, please log on.

Journal of NeuroEngineering and Rehabilitation 2010, 7:38  doi:10.1186/1743-0003-7-38

Published: 30 July 2010

Abstract

Background

Entropy when applied to biological signals is expected to reflect the state of the biological system. However the physiological interpretation of the entropy is not always straightforward. When should high entropy be interpreted as a healthy sign, and when as marker of deteriorating health? We address this question for the particular case of human standing balance and the Center of Pressure data.

Methods

We have measured and analyzed balance data of 136 participants (young, n = 45; elderly, n = 91) comprising in all 1085 trials, and calculated the Sample Entropy (SampEn) for medio-lateral (M/L) and anterior-posterior (A/P) Center of Pressure (COP) together with the Hurst self-similariy (ss) exponent α using Detrended Fluctuation Analysis (DFA). The COP was measured with a force plate in eight 30 seconds trials with eyes closed, eyes open, foam, self-perturbation and nudge conditions.

Results

1) There is a significant difference in SampEn for the A/P-direction between the elderly and the younger groups Old > young. 2) For the elderly we have in general A/P > M/L. 3) For the younger group there was no significant A/P-M/L difference with the exception for the nudge trials where we had the reverse situation, A/P < M/L. 4) For the elderly we have, Eyes Closed > Eyes Open. 5) In case of the Hurst ss-exponent we have for the elderly, M/L > A/P.

Conclusions

These results seem to be require some modifications of the more or less established attention-constraint interpretation of entropy. This holds that higher entropy correlates with a more automatic and a less constrained mode of balance control, and that a higher entropy reflects, in this sense, a more efficient balancing.